Exercise 3.3.1

For the following functions, sketch $f(x)$, the Fourier series of $f(x)$, the Fourier sine series of $f(x)$, and the Fourier cosine series of $f(x)$:
(a) $f(x)=1$
(b) $\quad f(x)=1+x$
(c) $f(x)= \begin{cases}x & x<0 \\ 1+x & x>0\end{cases}$
(d) $f(x)=e^{x}$
(e) $\quad f(x)= \begin{cases}2 & x<0 \\ e^{-x} & x>0\end{cases}$

Solution

Assume that $f(x)$ is a piecewise smooth function on the interval $0 \leq x \leq L$. The even extension of this function to the whole line $(-\infty<x<\infty)$ with period $2 L$ is given by the Fourier cosine series expansion,

$$
\begin{equation*}
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}, \tag{1}
\end{equation*}
$$

at points where $f(x)$ is continuous and by the average of the left-hand and right-hand limits at points of discontinuity. The odd extension of $f(x)$ to the whole line with period $2 L$ is given by the Fourier sine series expansion,

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}, \tag{2}
\end{equation*}
$$

at points where $f(x)$ is continuous and by the average of the left-hand and right-hand limits at points of discontinuity. To determine A_{0}, integrate both sides of equation (1) with respect to x from 0 to L.

$$
\int_{0}^{L} f(x) d x=\int_{0}^{L}\left(A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}\right) d x
$$

Split up the integral on the right and bring the constants in front.

$$
\begin{aligned}
\int_{0}^{L} f(x) d x & =A_{0} \underbrace{\int_{0}^{L} d x}_{=L}+\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0} \\
& =A_{0} L
\end{aligned}
$$

Therefore,

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
$$

To get A_{n}, multiply both sides of equation (1) by $\cos \frac{p \pi x}{L}$

$$
f(x) \cos \frac{p \pi x}{L}=A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} f(x) \cos \frac{p \pi x}{L} d x=\int_{0}^{L}\left(A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}\right) d x
$$

Split up the integral on the right and bring the constants in front.

$$
\int_{0}^{L} f(x) \cos \frac{p \pi x}{L} d x=A_{0} \underbrace{\int_{0}^{L} \cos \frac{p \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty} A_{n} \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L} d x
$$

Because the cosine functions are orthogonal, the integral on the right is zero if $n \neq p$. Only if $n=p$ does the integral yield a nonzero result.

$$
\begin{aligned}
\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x & =A_{n} \int_{0}^{L} \cos ^{2} \frac{n \pi x}{L} d x \\
& =A_{n}\left(\frac{L}{2}\right)
\end{aligned}
$$

Therefore,

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

To get B_{n}, multiply both sides of equation (2) by $\sin \frac{p \pi x}{L}$

$$
f(x) \sin \frac{p \pi x}{L}=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} f(x) \sin \frac{p \pi x}{L} d x=\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x
$$

Split up the integral on the right and bring the constants in front.

$$
\int_{0}^{L} f(x) \sin \frac{p \pi x}{L} d x=\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x
$$

Because the sine functions are orthogonal, the integral on the right is zero if $n \neq p$. Only if $n=p$ does the integral yield a nonzero result.

$$
\begin{aligned}
\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x & =B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x \\
& =B_{n}\left(\frac{L}{2}\right)
\end{aligned}
$$

Therefore,

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Part (a)

For $f(x)=1$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{L} \int_{0}^{L} d x=1 \\
A_{n} & =\frac{2}{L} \int_{0}^{L} \cos \frac{n \pi x}{L} d x=0 \\
B_{n} & =\frac{2}{L} \int_{0}^{L} \sin \frac{n \pi x}{L} d x=\frac{2\left[1-(-1)^{n}\right]}{n \pi} .
\end{aligned}
$$

The even extension of $f(x)$ to the whole line is shown below.

The odd extension of $f(x)$ to the whole line is shown below.

Part (b)

For $f(x)=1+x$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{L} \int_{0}^{L}(1+x) d x=\frac{L+2}{2} \\
A_{n} & =\frac{2}{L} \int_{0}^{L}(1+x) \cos \frac{n \pi x}{L} d x=\frac{2\left[-1+(-1)^{n}\right] L}{n^{2} \pi^{2}} \\
B_{n} & =\frac{2}{L} \int_{0}^{L}(1+x) \sin \frac{n \pi x}{L} d x=\frac{2-2(-1)^{n}(L+1)}{n \pi} .
\end{aligned}
$$

The even extension of $f(x)$ to the whole line is shown below.

The odd extension of $f(x)$ to the whole line is shown below.

Part (c)

For $f(x)=x$ if $x<0$ and $f(x)=1+x$ if $x>0$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{L} \int_{0}^{L}(1+x) d x=\frac{L+2}{2} \\
A_{n} & =\frac{2}{L} \int_{0}^{L}(1+x) \cos \frac{n \pi x}{L} d x=\frac{2\left[-1+(-1)^{n}\right] L}{n^{2} \pi^{2}} \\
B_{n} & =\frac{2}{L} \int_{0}^{L}(1+x) \sin \frac{n \pi x}{L} d x=\frac{2-2(-1)^{n}(L+1)}{n \pi} .
\end{aligned}
$$

The even extension of $f(x)$ to the whole line is shown below.

The odd extension of $f(x)$ to the whole line is shown below.

Part (d)

For $f(x)=e^{x}$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{L} \int_{0}^{L} e^{x} d x=\frac{e^{L}-1}{L} \\
A_{n} & =\frac{2}{L} \int_{0}^{L} e^{x} \cos \frac{n \pi x}{L} d x=\frac{2\left[-1+(-1)^{n} e^{L}\right] L}{n^{2} \pi^{2}+L^{2}} \\
B_{n} & =\frac{2}{L} \int_{0}^{L} e^{x} \sin \frac{n \pi x}{L} d x=-\frac{2\left[-1+(-1)^{n} e^{L}\right] n \pi}{n^{2} \pi^{2}+L^{2}} .
\end{aligned}
$$

The even extension of $f(x)$ to the whole line is shown below.

The odd extension of $f(x)$ to the whole line is shown below.

Part (e)

For $f(x)=2$ if $x<0$ and $f(x)=e^{-x}$ if $x>0$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{L} \int_{0}^{L} e^{-x} d x=\frac{1-e^{-L}}{L} \\
A_{n} & =\frac{2}{L} \int_{0}^{L} e^{-x} \cos \frac{n \pi x}{L} d x=\frac{2\left[1-(-1)^{n} e^{-L}\right] L}{n^{2} \pi^{2}+L^{2}} \\
B_{n} & =\frac{2}{L} \int_{0}^{L} e^{-x} \sin \frac{n \pi x}{L} d x=\frac{2\left[1-(-1)^{n} e^{-L}\right] n \pi}{n^{2} \pi^{2}+L^{2}} .
\end{aligned}
$$

The even extension of $f(x)$ to the whole line is shown below.

The odd extension of $f(x)$ to the whole line is shown below.

Now assume that $f(x)$ is a piecewise smooth function on the interval $-L \leq x \leq L$. The $2 L$-periodic extension of this function to the whole line $(-\infty<x<\infty)$ is given by the Fourier series expansion,

$$
\begin{equation*}
f(x)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right) \tag{3}
\end{equation*}
$$

at points where $f(x)$ is continuous and by the average of the left-hand and right-hand limits at points of discontinuity. To get A_{0}, integrate both sides of equation (3) with respect to x from $-L$ to L.

$$
\begin{aligned}
\int_{-L}^{L} f(x) d x & =\int_{-L}^{L}\left[A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}\right)\right] d x \\
& =A_{0} \underbrace{\int_{-L}^{L} d x}_{=2 L}+\sum_{n=1}^{\infty}(A_{n} \underbrace{\int_{-L}^{L} \cos \frac{n \pi x}{L} d x}_{=0}+B_{n} \underbrace{\int_{-L}^{L} \sin \frac{n \pi x}{L} d x}_{=0}) \\
& =A_{0}(2 L)
\end{aligned}
$$

Therefore,

$$
A_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x
$$

To get A_{n}, multiply both sides of equation (3) by $\cos \frac{p \pi x}{L}$

$$
f(x) \cos \frac{p \pi x}{L}=A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}+B_{n} \sin \frac{n \pi x}{L} \cos \frac{p \pi x}{L}\right)
$$

and then integrate both sides with respect to x from $-L$ to L.

$$
\begin{aligned}
\int_{-L}^{L} f(x) \cos \frac{p \pi x}{L} d x & =\int_{-L}^{L}\left[A_{0} \cos \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L}+B_{n} \sin \frac{n \pi x}{L} \cos \frac{p \pi x}{L}\right)\right] d x \\
& =A_{0} \underbrace{\int_{-L}^{L} \cos \frac{p \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty}(A_{n} \int_{-L}^{L} \cos \frac{n \pi x}{L} \cos \frac{p \pi x}{L} d x+B_{n} \underbrace{\int_{-L}^{L} \sin \frac{n \pi x}{L} \cos \frac{p \pi x}{L} d x}_{=0})
\end{aligned}
$$

Because the sine and cosine functions are orthogonal, the third integral on the right is zero. The second integral is also zero if $n \neq p$. Only if $n=p$ does this integral yield a nonzero result.

$$
\begin{aligned}
\int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x & =A_{n} \int_{-L}^{L} \cos ^{2} \frac{n \pi x}{L} d x \\
& =A_{n}(L)
\end{aligned}
$$

Therefore,

$$
A_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x \text {. }
$$

To get B_{n}, multiply both sides of equation (3) by $\sin \frac{p \pi x}{L}$

$$
f(x) \sin \frac{p \pi x}{L}=A_{0} \sin \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L} \sin \frac{p \pi x}{L}+B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}\right)
$$

and then integrate both sides with respect to x from $-L$ to L.

$$
\begin{aligned}
\int_{-L}^{L} f(x) \sin \frac{p \pi x}{L} d x & =\int_{-L}^{L}\left[A_{0} \sin \frac{p \pi x}{L}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{L} \sin \frac{p \pi x}{L}+B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}\right)\right] d x \\
& =A_{0} \underbrace{\int_{-L}^{L} \sin \frac{p \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty}(A_{n} \underbrace{\int_{-L}^{L} \cos \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x}_{=0}+B_{n} \int_{-L}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x)
\end{aligned}
$$

Because the sine and cosine functions are orthogonal, the second integral on the right is zero. The third integral is also zero if $n \neq p$. Only if $n=p$ does this integral yield a nonzero result.

$$
\begin{aligned}
\int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x & =B_{n} \int_{-L}^{L} \sin ^{2} \frac{n \pi x}{L} d x \\
& =B_{n}(L)
\end{aligned}
$$

Therefore,

$$
B_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x \text {. }
$$

Part (a)

For $f(x)=1$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} d x=1 \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} \cos \frac{n \pi x}{L} d x=0 \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} \sin \frac{n \pi x}{L} d x=0
\end{aligned}
$$

The $2 L$-periodic extension of $f(x)$ to the whole line is shown below.

Part (b)
For $f(x)=1+x$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L}(1+x) d x=1 \\
A_{n} & =\frac{1}{L} \int_{-L}^{L}(1+x) \cos \frac{n \pi x}{L} d x=0 \\
B_{n} & =\frac{1}{L} \int_{-L}^{L}(1+x) \sin \frac{n \pi x}{L} d x=-\frac{2(-1)^{n} L}{n \pi} .
\end{aligned}
$$

Part (c)

For $f(x)=x$ if $x<0$ and $f(x)=1+x$ if $x>0$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L}\left[\int_{-L}^{0} x d x+\int_{0}^{L}(1+x) d x\right]=\frac{1}{2} \\
A_{n} & =\frac{1}{L}\left[\int_{-L}^{0} x \cos \frac{n \pi x}{L} d x+\int_{0}^{L}(1+x) \cos \frac{n \pi x}{L} d x\right]=0 \\
B_{n} & =\frac{1}{L}\left[\int_{-L}^{0} x \sin \frac{n \pi x}{L} d x+\int_{0}^{L}(1+x) \sin \frac{n \pi x}{L} d x\right]=\frac{1-(-1)^{n}(1+2 L)}{n \pi} .
\end{aligned}
$$

Part (d)

For $f(x)=e^{x}$, the coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} e^{x} d x=\frac{\sinh L}{L} \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} e^{x} \cos \frac{n \pi x}{L} d x=\frac{2(-1)^{n} L \sinh L}{n^{2} \pi^{2}+L^{2}} \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} e^{x} \sin \frac{n \pi x}{L} d x=-\frac{2(-1)^{n} n \pi \sinh L}{n^{2} \pi^{2}+L^{2}} .
\end{aligned}
$$

Part (e)
For $f(x)=2$ if $x<0$ and $f(x)=e^{-x}$ if $x>0$, the coefficients are

$$
\begin{aligned}
& A_{0}=\frac{1}{2 L}\left(\int_{-L}^{0} 2 d x+\int_{0}^{L} e^{-x} d x\right)=1+\frac{1-e^{-L}}{2 L} \\
& A_{n}=\frac{1}{L}\left(\int_{-L}^{0} 2 \cos \frac{n \pi x}{L} d x+\int_{0}^{L} e^{-x} \cos \frac{n \pi x}{L} d x\right)=\frac{\left[1-(-1)^{n} e^{-L}\right] L}{n^{2} \pi^{2}+L^{2}} \\
& B_{n}=\frac{1}{L}\left(\int_{-L}^{0} 2 \sin \frac{n \pi x}{L} d x+\int_{0}^{L} e^{-x} \sin \frac{n \pi x}{L} d x\right)=\frac{\left[1-(-1)^{n} e^{-L}\right] n \pi}{n^{2} \pi^{2}+L^{2}}+\frac{2\left[-1+(-1)^{n}\right]}{n \pi} .
\end{aligned}
$$

